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Abstract
A new, fully data-driven algorithm has been developed that uses a neural network to predict
plasma profiles on a scale of τE into the future given an actuator trajectory and the plasma
state history. The model was trained and tested on DIII-D data from the 2013–2018
experimental campaigns. The model runs in tens of milliseconds and is very simple to use.
This makes it a potentially useful tool for operators and physicists when planning plasma
scenarios. It is also fast enough to be used for real-time model-predictive control.

Keywords: DIII-D, neural networks, transport, control

(Some figures may appear in colour only in the online journal)

1. Introduction

Two primary goals for ITER operation are high fusion product
and long (steady-state) pulse length. The relevant plasma prop-
erties for such optimization are the spatial profiles of electron
and ion temperature, electron and ion density, rotation, and
safety factor q (or equivalently ι ≡ 1/q). Together, these prop-
erties encapsulate both fusion output and stability properties. It
is crucial for ITER and other next-step devices to simulate the
evolution of these plasma profiles over time for both (1) preset-
ting actuator trajectories that guide the plasma into the desired
state for a given experiment and (2) making finer adjustments
to the actuators in real-time using model predictive control. In
either case, the basic need is to predict how profiles will evolve
into the future given the present state alongside a ‘proposal’ for
how actuators will be set into the future. By predicting the evo-
lution of the plasma profiles given a variety of ‘proposals’ for
how the control knobs might be set, a user or algorithm chooses
the settings that will take the profiles to the most desirable
state.

A host of workflows can be considered for such plasma
profile evolution. The traditional approach is integrated
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modeling frameworks that iteratively calculate flux coeffi-
cients (the dynamics of which occur on turbulent timescales)
and the plasma equilibrium (which is established on MHD
timescales), then use this information alongside heat/particle
deposition profiles, spatial boundary conditions, saw-
tooth/NTM simulations, and other experimental assumptions
to integrate diffusion-like equations on much longer transport
timescales [1, 2].

For example, the JETTO [3] transport code has been used
to predict Te, T i, ne, and rotation on JET scenarios [4]. It
calls and passes information between a variety of modules, e.g.
QuaLiKiz to calculate transport coefficients and the PENCIL
code [5] to calculate beam deposition. TRANSP [6] is another
popular transport code. With help from OMFIT [7] in writ-
ing namelists and submitting jobs, TRANSP has been used to
predict Te and T i on DIII-D scenarios [8] with GLF23 [9] or
TGLF [10] to calculate transport coefficients, and NUBEAM
[11] for beam deposition.

For realtime applications, the control-oriented transport
code RAPTOR has been used to predict Te, T i, and ne profiles
with QLKNN [12, 13] (a neural network approximation for
QuaLiKiz) for JET scenarios [14]. That particular workflow
so far just used actuator source profiles from previous runs.
However, much progress has been made for calculating actu-
ator source profiles in realtime while maintaining accuracy,
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e.g. for injected neutral beams [15, 16] and electron cyclotron
waves [17].

In all of the above mentioned work, however, some assump-
tions or experimental data on uncontrollable quantities from
within the prediction window are still given as input, includ-
ing the Zeff profile (or multiple impurity ion densities) and
the spatial boundary condition on plasma profiles (or transport
coefficients). OMFIT’s STEP [18, 19] workflow seeks con-
sistency among these quantities via core-pedestal and impu-
rity transport coupling. Though not built for time-dependent
predictions, this steady-state workflow is an important proof
of concept for future work in this area. It uses TGLF-NN
(a faster, neural network regression of TGLF) to calculate
transport coefficients, STRAHL [20] to calculate impurity
transport (used to estimate the shape of the Zeff profile), and
EPED1-NN (a faster, neural network regression of [21]) to
calculate the boundary conditions on kinetic profiles. For time-
dependent predictions, JETTO has recently been used to sim-
ulate all profiles plus multiple impurities via SANCO [22],
though it still uses an ad hoc model to determine transport
coefficients near the plasma edge [23].

We propose a fundamentally different approach to pro-
file evolution that may prove useful for both offline scenario
optimization and real-time model-predictive control. Rather
than using integrated modeling with approximate submod-
ules, we directly approximate the profile at a future timestep
given the present profiles, present zero-dimensional plasma
parameters, and future information on the actuator settings.
Rather than requiring a sequence of models and approxima-
tions/assumptions with their compounding inaccuracies and
often time-consuming computations, we seek a simple and
fast (�100 ms) input–output mapping between what physicists
control (the actuators) and the metric that physicists care about
(the evolution of plasma profiles). This work approximates
such a mapping using a neural network trained on processed
experimental data.

Machine learning trained exclusively on processed experi-
mental data has already proven useful for a variety of fusion
tasks. Event prediction, such as for disruptions and insta-
bilities, is a particularly well-explored area. Various shallow
learning algorithms have been applied, such as support vector
machines [24], discriminant analysis [25], classification and
regression trees [26], and random forests [27, 28]. Neural net-
works also have a long history in event prediction, employed
by researchers at TEXT [29], DIII-D [30], ASDEX [31], JET
[32], JT-60U [33], and ADITYA [34]. More recently, a disrup-
tion predictor combining recurrent and convolutional neural
networks was developed, which helped inspire the architecture
for the present work [35]. Several of these algorithms were
tested on tokamaks in real-time, demonstrating that machine
learning not only can provide state-of-the-art accuracy but also
can be useful for control.

The model we present here is a first attempt at fully data-
driven profile prediction. Due to the difficulties obtaining a
large database of reliable profiles, it does not yet predict ion
temperature and ion density profiles, instead predicting iota ≡
1/q, ne, Te, rotation, and pressure. For the sake of simplicity, it

also works only during current flattop, and considers a some-
what limited set of possible scenarios and control knobs (as
described in section 2 1).

2. Machine learning model

The time evolution of the plasma state can be generically
described by a differential equation of the form:

dx
dt

= f (x, u), (1)

where x is a vector of the plasma state, consisting of the values
of the profiles suitably discretized in space, and u is a vector
of control inputs. This can be put in a discrete time form:

xt+1 = xt + f (xt, ut), (2)

where t is a time index. In this paper, we attempt to approxi-
mate the function f using a neural network.

2.1. Data processing

Data is loaded and partially processed within the OMFIT
framework [7]. The rest of the processing, along with the
model training, is done on 1 NVIDIA V100 GPU and 8
IBM POWER9 CPU cores on Princeton University’s traverse
computing cluster. This code is publicly available5.

DIII-D shots from the 2013 through 2018 campaigns are
collected from the MDS + database [36]. Shots with a pulse
length less than 2 s, a normalized plasma beta less than 1, or
a non-standard tokamak divertor topology are excluded from
the start. We exclude all data after a disruption occurs. For sim-
plicity in this first iteration of the model, we chose to use just
four actuators. We therefore also exclude shots using electron
cyclotron heating and 3D coil operation (e.g. used for reso-
nant magnetic perturbations). We also do use gas control, but
we read the density target for a low-level feedback controller
rather than the gas flow rates themselves; therefore we only
include samples when the feedback controller is in use, as
opposed to when operators set the gas flow rates directly.

All signals are then put on the same 50 ms time base by
averaging all signal values available between the present time
and 50 ms prior. If no data is available in the window, the most
recent value is floated. Only shots in which all signals are avail-
able are included. For this first iteration of the model, we only
include data during plasma current flattop.

The model considers data in 50 ms non-overlapping win-
dows. This is a spacing large enough to smooth over most vari-
ations in modulated signals like the injected power, but small
enough that significant changes in the profiles are not missed.
Each window corresponds to a single ‘timestep’. There are
three fundamental types of data we consider: plasma profiles,
plasma parameters, and actuators. The plasma state is deter-
mined by the plasma profiles and the parameters. Profiles are
one-dimensional signals like temperature and density. Param-
eters are zero-dimensional signals like average density, plasma

5 https://github.com/jabbate7/plasma-profile-predictor
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Table 1. Signals used in profile prediction neural network. ‘Source’ denotes the
algorithm or MDS + pointname from which the data was obtained.

Name Source Units

Profiles Electron density Zipfit 1019 m−3

Electron temperature Zipfit keV
Ion rotation Zipfit kHz

Rotational transforma (ι) EFIT01 —
Plasma pressure EFIT01 Pa

Actuators Injected power pinj MW
Injected torque tinj N·m
Target current iptipp A
Target density dstdenp 1019 m−3

Parameters Top triangularity EFIT01 —
Bottom triangularity EFIT01 —
Plasma elongation EFIT01 —

Plasma volume EFIT01 m3

Normalized internal inductance EFIT01 —
Line avg. density dssdenest 1019 m−3

aWhile the safety factor q is more common in tokamak physics, due to the singularity at the
separatrix, the rotational transform ι = 1/q was found to present fewer numerical difficulties.

volume, and triangularity. Actuators are knobs that are set by
the operator, including injected power and target current. A
full list of signals used by the algorithm is shown in table 1.
We also plot the distribution over training samples of values
for various signals in figure 1.

Although ion temperature and density are important param-
eters for fusion, we do not include them in this first iteration
of the model since the signals are often less reliable and there-
fore would require more careful analysis and fitting methods.
We also might achieve better predictions and more complete
control by replacing the total beam power and torque with the
lower level individual beam voltages, perveances, and ener-
gies, but for simplicity we focus on only the total power and
torque. This choice is still relevant for control, as we can use
total power and torque as a proxy for individual beam settings
via the existing DIII-D ‘VEP’ controller [37]. Similarly, as a
proxy for individual gas flow rates, we use the target for the
existing DIII-D line-averaged density controller (see [38] and
references therein for details on the density controller).

The model takes in actuator and plasma parameter signals
6 timesteps (i.e. 300 ms) into the past. It takes in the profiles at
the present timestep. And it takes in a ‘proposal’ for the actua-
tors at each of 4 timesteps (200 ms) into the future. Throughout
the paper, we will call this full set of information a ‘sample’.
With the sample as input, the algorithm predicts the change
in each of the profiles 200 ms (4 timesteps) into the future.
This 200 ms prediction window was chosen based on the typi-
cal energy confinement time (τE) at DIII-D (see figure 2), and
was empirically found to be a period over which the profiles
change noticeably while not so long that the future state cannot
be reliably predicted. The lookback of 300 ms (6 timesteps)
was determined by trial and error, and also by rough esti-
mates of correlation times between actuator inputs and profile
response.

Temperature, density and rotation profiles are from DIII-
D’s automatic profile fitting code Zipfit, which does some

basic normalization then runs a variety of fits (including ten-
sion splines and a modified hyperbolic tangent plus inverse
Zernike polynomial method). Zipfit returns the fit with the

lowest |χ2
reduced| ∝

∑
i

(
(yi−ŷ(xi))2

y2
i,error

)
for yi the ith measurement

(calculated from diagnostics), yi,error the error bar of the ith
measurement, and ŷ(xi) the fit value at the point of the ith
measurement [39]. Pressure and rotational transform profiles
are automatically generated with the DIII-D equilibrium code
EFIT [40]. Zipfit profiles are downsampled onto 33 equally
spaced points in normalized toroidal flux coordinates, denoted
by ρ, where ρ = 0 is the magnetic axis and ρ = 1 is the last
closed flux surface. EFIT profiles are similarly downsampled
but onto a basis of normalized poloidal flux denoted byψ. This
downsampling of data that was already fit is done to reduce the
size of the input data. Note that EFIT and Zipfit are not com-
pletely causal calculations because they average diagnostic
constraints from the future. However, this future information is
at most 20 ms into the future, much less than the 200 ms predic-
tion window and also less than half of the energy confinement
time. Nonetheless, in the future we plan a more standardized
fit to diagnostics that will be fully causal.

Each signal was normalized by subtracting out the median
value and dividing by the inter-quartile range. This was found
to be more robust against outliers than the more common
method of subtracting the mean and dividing by the standard
deviation.

2.2. Model architecture

A sketch of the model architecture is shown in figure 3. Given
the spatially distributed information contained in the plasma
profiles, we take inspiration from image classification models
and use a sequence of convolutional layers to attempt to cap-
ture local effects in the profiles, such as gradients and transport
coefficients. Using multiple convolutional layers with varying

3
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Figure 1. Histogram of various input signals for all training samples.
The left column shows the core-most value of electron density,
electron temperature, q, and rotation. The middle column shows the
four actuators. The right column shows a few of the parameters.

kernel sizes has been shown to help the model learn infor-
mation over a wide range of spatial scales [41, 42]. Multiple
profiles are also processed at the same time, with each pro-
file treated as a ‘channel’ of a 1D image (cf, RGB channels
for a 2D image). This allows the model to learn correlations
between the different profiles. Each layer expands the number
of channels and the final output of the initial convolutional lay-
ers is an array of size n × m, where n is the number of spatial
points (33) and m is a hyperparameter to be tuned (denoted
as ‘channels’, discussed further in section 2 4). Each chan-
nel of this array can be considered a ‘feature profile’ that is
a nonlinear combination of the various input profiles.

The parameter and actuator data is fed through a series
of fully connected and long-short term memory (LSTM)
layers [43]. The fully connected layers attempt to measure the
effect of the given actuator or parameter at each spatial point
in the plasma, while the LSTM layers look over the time his-
tory of the signals to account for the fact that in many cases it

Figure 2. Histogram of median energy confinement times for the
shots included in the training set. The vast majority of confinement
times lie above 50 ms (the left red line) and below 200 ms (the right
red line), hence the choice to average over 50 ms windows and
predict 200 ms into the future.

takes time for a given actuator to propagate its effect through
the plasma. The final output from this section of the model is
again an array of size n × m, which is then added to the ‘feature
profiles’ output by the initial convolutional layers.

This combination of profile and actuator information is then
fed through a second sequence of convolutional layers, with a
unique output path for each predicted profile. Each of these
output paths reduce the m ’feature profiles’ down to a sin-
gle output profile, which is the model’s estimate of the given
profile 200 ms in the future.

All layers in the network use the ReLU activation function,
which has good performance and ease of training [44, 45]. The
one exception is the LSTM layers, which use a hard sigmoid
function for their recurrent activation. This bounds the output,
which helps improve convergence during training [46].

2.3. Model training

The goal of a neural network is to approximate a function by
optimizing the parameters of a model (described above). The
neural network can be described by a function of the form

f (x, u, θ), (3)

where x and u are the state and control, and θ are the weights to
be learned through training. Training consists of attempting to
find the weights θ∗ that minimize a cost function. In our case,
the cost function is a mean squared error. The optimization
problem can then be expressed as

θ∗ = arg min
θ

1
N

N∑
i

‖xi
t+1 − f (xi

t, ui
t, θ)‖2 + λ‖θ‖2, (4)

where i is an index that ranges over all N samples in the training
dataset, and λ is a regularization parameter that can be tuned
to prevent overfitting.

We use Keras [47] with a backend of tensorflow to manage
the traditional neural net training workflow. Over the training
set, the package computes the steepest-descent step in the loss
function over the model-weight space and saves it. After trial-
and-error, we chose a batch size of 128. So after every 128th

4
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Figure 3. Model architecture showing the algorithm’s process of combining parameter, actuator, and profile data into a set of ‘feature profiles’,
and then ultimately outputting predictions for each signal based on that block of information. The activation function used in all layers is ReLU.
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Table 2. Hyperparameters varied during model development, and the
resulting loss values averaged over all models. The hyperparameters selected
for the final model are bolded. In all cases, the selection with the minimum
loss (the chosen model) also had the lowest average loss, indicating that the
choice of hyperparameter is robust.

Architecture: Convolutional Fully Connected
Avg. loss: 0.080 0.572
Channels: 32 64 128 192
Avg. loss: 0.137 0.080 0.037 0.051
Shape params: No Yes
Avg. loss: 0.083 0.040
Sample weighting: None Variations
Avg. Loss: 0.173 0.101

randomly selected sample, the package does a pseudo-average
(we use the adaptive gradient optimization algorithm ADA-
GRAD [48]) of the previous 128 samples and then updates the
model weights and recomputes the derivatives to be used for
computing the steepest-descent paths for the next batch of 128
samples. We repeat this process over the entire dataset until
either the validation loss stops improving for more than eight
consecutive steps (‘early stopping’) or 200 times (‘epochs’),
whichever comes first. This entire process takes about 5 ho of
wall-clock time per model.

Shots in our database were split into 3 groups based on
the last digit of the shot number. Shots with a number end-
ing in 0 are reserved for a test set, accounting for 389 shots
containing 15 132 samples that were not seen by any models
during training or hyperparameter tuning. Shots ending in a
randomly chosen number (other than 0) were used for the val-
idation set and hyperparameter tuning, accounting for 15 772
samples from 415 shots. The remaining 121 242 samples from
3117 shots were used for training.

2.4. Model tuning

Another key choice in machine learning models is the hyper-
parameters, such as layer type, hidden layer size, type of acti-
vation function, and data normalization/weighting scheme. We
follow the traditional machine learning workflow. For a variety
of possible models (defined by their hyperparameter values),
the training set is used to stochastically optimize the model
weights. We then compute the loss function for each of the
models over the validation set and choose the model which
yields the lowest loss.

Initial random-hyperparametersearches demonstrated clear
dominance of some hyperparametersover others. For example,
we tried a variety of loss functions (ReLU [49], ELU [50],
SELU [51], sigmoid, tanh [52]) and ReLU was found to per-
form best overall. We then used a fixed-grid hyperparameter
tuning process to arrive at the final hyperparameter values.
Explanations of the hyperparameters in this grid search are
discussed below, and summarized in table 2 and figure 4.

The first hyperparameter we considered is the type of hid-
den layer used. We considered both convolutional and fully
connected layers. It was found that the convolutional layers
systematically performed better than fully connected, which
might be physically understood by recalling that convolutional

Figure 4. Comparison of minimum validation loss for models using
pressure and rotational transform profiles from EFIT01, EFIT02,
and without. In all cases, having information about pressure and
rotational transform improved the predictions for temperature,
density, and plasma rotation, and inputting EFIT01 data is slightly
better than inputting EFIT02 data.

layers help couple local information, which resembles the local
gradients that drive transport equations.

A related hyperparameter is the maximum size of the hid-
den layers, as given by the number of output channels in
the middle of the model. It was found that a maximum hid-
den layer size of 128 channels provided the best results, with
smaller models generally not able to fit the data well. With 128
channels, the model had approximately 10 million parameters,
which in some cases led to overfitting, so L2 regularization was
used with a magnitude of λ = 10−4. Larger models tended to
overfit even with much higher levels of regularization.

We also found that supplying the model with parameters to
describe the plasma shape improved performance. We chose to
use scalar shape parameters rather than the full 2D flux shapes
to keep the model size manageable, though future work may
include more detailed shape information.

Another hyperparameter we considered was weighting the
importance of samples differently during training. It was
observed that many of the shots in the training set are fairly
similar, and across many timesteps the profiles can be roughly
constant. One common method to mitigate the effects of an
unbalanced training set is weighting the samples relative to
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Figure 5. Model prediction vs experimental measurement of core
(averaged over ρ/ψ from 0 to 0.3) changes in various signals
between the indicated timesteps and 200 ms beyond it. The neutral
beam power and torque, whose fluctuations drive the dynamics of
the shot, are also plotted. The dashed black lines indicate the
timesteps plotted in figures 6 and 7. The blue dashed line on the
neutral beam plots are 200 ms ahead of the black dashed line, so
depict the final timestep of future data that informs the prediction
happening at the black dashed line.

their frequency. This is easiest to implement for classification
tasks with a finite number of classes, where the number of
members of each class can serve as the weighting parameter.
This can be difficult for regression problems, where the num-
ber of classes is effectively infinite, so we opted for a simpler
approach of weighting the samples by the total variation of
the actuators in the 300 ms lookback window. To validate per-
formance, we turned this sample weighting off. We found that
weighting the samples in this fashion did improve performance
on average and led to the best performing models when com-
bined with the other choices of hyperparameters. We suggest
that this weighting effectively instructed the model to focus
more on samples with large variations, which would help it to
learn the dominant physics driving transport.

Figure 6. Model prediction vs experimental measurement at the left
time slice in figure 5. The gray curve shows the true experimental
profile at time t, the orange dashed curve shows the model
prediction for the profile at time t + 200 ms, and the blue curve
shows the true experimental profile at t + 200 ms. Note this
prediction is made given a decreasing future neutral beam power
and torque, hence the decrease in temperature and rotation.

The final consideration was which type of EFIT equilib-
rium reconstruction to use for the pressure and rotational trans-
form profiles. EFIT01 is a magnetics only reconstruction of the
equilibrium, and so is generally only accurate for estimating
global parameters. EFIT02 uses motional Stark effect data to
constrain the safety factor profile and so is generally a more
accurate estimate of the equilibrium. For each of (1) EFIT01
pressure/rotational transform profiles alongside kinetic pro-
files as profile inputs (2) EFIT02 pressure/rotational transform
profiles alongside kinetic profiles as profile inputs and (3) only
kinetic profiles as profile inputs, a variety of different models
(over a similar grid of hyperparameters as shown in table 2)
were trained to predict the kinetic profiles only. For each of
the three cases, we used the minimum validation loss across
models (i.e. the loss corresponding to the hyperparameter-

7
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Figure 7. Model prediction vs experimental measurement at the
right time slice in figure 5. The future neutral beam power is only
slightly decreasing while the neutral beam torque is decreasing a lot,
hence the slight decrease in temperature but major decrease in
rotation.

tuned model) as a measure of how helpful the profile inputs
are in predicting the kinetic profiles. As shown in figure 4,
including any type of magnetic profiles results in better predic-
tions for temperature, density, and plasma rotation. However,
despite profiles from EFIT01 generally being inaccurate, using
EFIT01 data results in slightly better predictions overall than
EFIT02. This could be due to EFIT01 data being available
for slightly more training samples (121 242 in the training set
for EFIT01 compared to 106 720 for EFIT02, an 11% differ-
ence). It could also be due to the higher fidelity EFIT02 data
containing more detail than is strictly necessary, making the
relevant information harder to extract. In any case, future work
is currently underway to build a large database of kinetically
constrained equilibria using CAKE [53] which will be used
to train future models. We also hope to more systematically
evaluate the sensitivity of model performance to different data
fitting and filtering methods.

Figure 8. Model prediction for a shot with a growing tearing mode
starting at 1500 ms (highlighted in yellow and quantitatively
measured by the RMS strength of the n = 1 magnetic fluctuation,
depicted in the bottom plot). Predictions are mostly accurate until
the mode begins to impact the dynamics.

3. Model performance

To measure model performance, we will compare model pre-
dictions of changes in profiles to the experimental truth over
samples from the never-before-seen test set (shots ending in 0).
Computing the prediction for a single sample takes a few tens
of milliseconds on a standard modern computer.

We start by looking at a few individual experiments. In
figure 5, we examine the model’s ability to predict profiles
during the beam-modulated shot 175970. We can also look at
model performance for predicting full profiles at the timeslices
indicated by figure 5’s black dashed lines. These profile pre-
dictions are for 1200 ms in figure 6 and 2500 ms in figure 7.
Note that we are plotting the raw output of the model to give the
clearest picture of what the model returns, although the output
is sometimes not smooth. These profiles could be used as-is,
e.g. in a controller that only needs the overall shape and direc-
tion of change over time. For other applications, the profiles

8
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Figure 9. Full profile predictions for the timeslice indicated in
figure 8. The dynamics are governed by the tearing mode, which is
information unknown to the model.

could be smoothed as a post-processing step.
The predictions in the first timeslice (figure 6) are relatively

accurate for all profiles except rotation, which has the correct
direction and magnitude of change but the wrong shape. This
may be because we are using the total injected torque, which
neglects that each individual beam deposits particles at a differ-
ent angle and location. As previously mentioned, an upgrade to
this model might take individual beam powers and torques as
input. Nonetheless, for the second timeslice in figure 7, we see
better agreement in the rotation, suggesting the approximation
of total torque is valid enough for some cases.

Predictions for shot 175970 are relatively good. We also
selected a relatively bad example: shot 157380, whose time
trace is shown in figure 8 and whose time slice at 2200 ms is
shown in figure 9. Despite predictions being bad overall, we
saw the accuracy is actually quite good until 1500 ms (prior to
yellow highlight in the time trace). We plotted the n = 1 mode
amplitude (bottom panel of time trace) and realized that pre-
dictions begin to deteriorate right as a tearing mode begins to
grow. The present model is not given signals known to forecast

Figure 10. First two PCA modes (columns) for each profile (row).
σ̂2 denotes the explained variance ratio for the given mode. The
explained variance ratio is a measure of how much of the variance in
the full dataset is accounted for in a given PCA mode, normalized
by the total variance in the dataset. For all profiles, the first two PCA
modes are sufficient to capture more than 90% of the variance in that
profile.

tearing modes, such as the amplitude of the n = 1 and n = 2
modes [28], so this may explain the bad predictions. Including
these mode amplitudes and similar signals in the future could
improve performance on shots like this one whose dynamics
are governed by instabilities.

In addition to individual shot analysis, we can also compare
model predictions to true predictions for a few selected points
or moments of the profiles. Instead of tracking individual point
predictions as we did for the core in the timetraces of individual
shots, we opt here to track the principle component analysis
(PCA) coefficients of the profiles so we can encapsulate more
information in a single plot and get a sense for how well the
model predicts both bulk changes and shape changes.

PCA works by finding an orthogonal set of basis vectors for
a given dataset, with the desirable feature that the first PCA
mode captures the maximum possible variance in the dataset,
while the second mode captures the most possible variance
while being orthogonal to the first mode, and in general the ith
mode captures the maximum possible variance while remain-
ing orthogonal to all modes j < i. Using the PCA modes as

9
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Figure 11. Comparison of the predicted changes over 200 ms in
PCA coefficient 1 (left column) and 2 (right) column) to the true
changes in the PCA coefficients, for all samples in the test set. Rows
correspond to the five profiles. R2 accuracy is shown at bottom right
of each subplot, and is 1 for perfect accuracy. All axes are linearly
scaled, but the number of samples is logarithmic.

basis functions, we can decompose a given profile as

f(ψ) =
∑

i

aivi(ψ) (5)

where vi are the PCA modes, and ai are weighting coefficients.
Given that the modes capture the maximum possible vari-
ance, only a few terms are usually needed to describe a profile
very accurately. Illustrations of the two most dominant modes
(v1 and v2) for each profile are shown in figure 10, along with
their explained variance, normalized to 1 (higher explained
variance corresponds to greater importance).

We can examine how well the ai of the predicted profiles
match the ai of the true profiles. In figure 11 we compare the
predicted change in the first two PCA coefficients to the true
change, for all test samples. The dotted black line is drawn at
45 degrees and denotes perfect accuracy where the prediction
matches the true value. Points above the line indicate the model
is over-predicting the coefficient, and points below indicate the
model is under-predicting the coefficient. The R2 value at the
bottom right of each subplot is the statistical ‘coefficient of
determination’ for predicting the true change in the coefficient
is exactly equal to the predicted change in the coefficient. If
the model is perfect, this value would be 1.

We see that alignment of samples with the black line for the
first PCA coefficient is relatively good, all profiles having an
R2 value above 0.6. Performance is worse but still much better
than blind guessing for the second PCA coefficient, meaning
the model is learning not just the bulk direction of change, but
also about the higher-order shaping. The degradation of per-
formance between the first and second PCA coefficient is to
be expected as the second mode represents significantly less
information.

4. Discussion and conclusion

We demonstrated that a machine learning model can directly
approximate both the bulk and shape of profiles 200 ms into the
future, given only experimental data at the present timestep and
a ‘proposal’ for actuators into the future. Given that this model
runs in tens of milliseconds and is very simple to use, it is a
potentially useful tool for operators and physicists when plan-
ning plasma scenarios. Additionally, we have already success-
fully implemented a model-predictive control algorithm on
DIII-D using a reduced version of the model that runs in hun-
dreds of microseconds and reads only real-time information.
A paper on this work is forthcoming.

An important caveat remains. Shots tend to be reloaded
from previous experiments when testing new physics, so that
despite having thousands of shots many are very similar. In
general a neural net finds the easiest way to match its tar-
get, and so could be learning to identify the relatively small
number of discharge patterns rather then recognizing physics
of transport and source deposition. Whether the neural net is
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learning useful patterns or simply memorizing past discharge
evolution is difficult to answer. One imperfect methodology
for future work would be to compare the neural net’s predicted
response to each actuator with that of a theoretical model. This
would allow independent and flexible variation of the inputs.
Another mechanism will be our planned experiments allow-
ing the model to control the plasma in real-time through a
variety of unseen scenarios. Finally, having a larger database
of shots where semi-random changes to actuators are made
during flattop would be a helpful supplement to the existing
DIII-D database. In addition to helping improve data-driven
models, this would also help develop and validate physics-
based models.

There are a few techniques to make the model perform even
better, as mentioned throughout the paper. First, some infor-
mation is still missing. For example, n = 1 and n = 2 mode
amplitudes, and perhaps fluctuation (from ECE or BES) and
radial electric field measurements may help. More challeng-
ing would be including wall-condition information (such as
how recently the machine was boronized). Second, it would
be desirable in the future to predict more profiles (such as ion
temperature and density), account for more scenarios (such as
current rampup and non-standard topologies), and use more
actuators (such as shape control, ECH, and individual beam
powers and torques rather than just the totals).
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